Physiologic Impact of Circulating RBC Microparticles upon Blood-Vascular Interactions

نویسندگان

  • Ahmed S. Said
  • Stephen C. Rogers
  • Allan Doctor
چکیده

Here, we review current data elucidating the role of red blood cell derived microparticles (RMPs) in normal vascular physiology and disease progression. Microparticles (MPs) are submicron-size, membrane-encapsulated vesicles derived from various parent cell types. MPs are produced in response to numerous stimuli that promote a sequence of cytoskeletal and membrane phospholipid changes and resulting MP genesis. MPs were originally considered as potential biomarkers for multiple disease processes and more recently are recognized to have pleiotropic biological effects, most notably in: promotion of coagulation, production and handling of reactive oxygen species, immune modulation, angiogenesis, and in initiating apoptosis. RMPs, specifically, form normally during RBC maturation in response to injury during circulation, and are copiously produced during processing and storage for transfusion. Notably, several factors during RBC storage are known to trigger RMP production, including: increased intracellular calcium, increased potassium leakage, and energy failure with ATP depletion. Of note, RMP composition differs markedly from that of intact RBCs and the nature/composition of RMP components are affected by the specific circumstances of RMP genesis. Described RMP bioactivities include: promotion of coagulation, immune modulation, and promotion of endothelial adhesion as well as influence upon vasoregulation via influence upon nitric oxide (NO) bioavailability. Of particular relevance, RMPs scavenge NO more avidly than do intact RBCs; this physiology has been proposed to contribute to the impaired oxygen delivery homeostasis that may be observed following transfusion. In summary, RMPs are submicron particles released from RBCs, with demonstrated vasoactive properties that appear to disturb oxygen delivery homeostasis. The clinical impact of RMPs in normal and patho-physiology and in transfusion recipients is an area of continued investigation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utility of the Red Blood Cell-Derived Microparticles as a Marker of Periprocedural Adverse Effects amongst Patients with Acute ST-Segment Elevation Myocardial Infarction

The short commentary is depicted the role of the circulating number of red blood cell (RBC) microparticles (MPs) as predictive biomarker in acute myocardial infarction patients after primary percutaneous coronary intervention (PCI). The commonly used cardiac biomarkers (i.e., troponins, creatine kinase-myocardial band isoenzymes, myoglobin, heart-type fatty acid-binding protein, copeptin and B-...

متن کامل

Bench-to-bedside review: Circulating microparticles - a new player in sepsis?

In sepsis, inflammation and thrombosis are both the cause and the result of interactions between circulating (for example, leukocytes and platelets), endothelial and smooth muscle cells. Microparticles are proinflammatory and procoagulant fragments originating from plasma membrane generated after cellular activation and released in body fluids. In the vessel, they constitute a pool of bioactive...

متن کامل

Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles.

Platelet microparticles are a normal constituent of circulating blood. Several studies have demonstrated positive correlations between thrombotic states and platelet microparticle levels. Yet little is known about the processes by which platelet microparticles are generated in vivo. We now characterize microparticles derived directly from megakaryocytes. Video microscopy of live mouse megakaryo...

متن کامل

Plasma microparticles and vascular disorders.

Microparticles are circulating, phospholipid rich, submicron particles released from the membranes of endothelial cells, platelets, leucocytes and erythrocytes. Investigation into their biological activity has revealed diverse actions in coagulation, cell signalling and cellular interactions. These actions are mediated through their phospholipid rich surfaces and the expression of cell surface ...

متن کامل

Transforming growth factor-β released by apoptotic white blood cells during red blood cell storage promotes transfusion-induced alloimmunomodulation.

BACKGROUND Red blood cell (RBC) alloimmunization is a major immunologic risk of transfusion. However, RBC storage facilitates white blood cell (WBC) apoptosis and apoptotic cells have immunomodulatory properties. We investigated the behavior of WBCs, and apoptosis in particular, in RBC units during storage and then studied the impact of WBC apoptosis on the modulation of posttransfusion alloimm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017